SHORT PAPERS

of simultaneous equations at each frequency. Unfortunately, it is
not always possible "o uncouple the equations as the following
example shows:

10 52 2
Ro = Re = Ze =
01 0 3 2 52

Even if under certain cases it is possible, theoretically, to diagonalize
the coefficient matrix in (24), such a transformation can easily lead
to numerical instabilities unless it is of a numerically stable type
such as an orthogonal transformation [6].

Although it is not always possible to obtain 0 in (25) in diagonal
form, it is always possible to find a very stable transformation M
such that 6 is in lower (or upper) Hessenberg form [67]. The lower
Hessenberg form of 8 is such that a large number of the entries in
0 are zero, i.e., [01;; =0,{=1,+-+n — 2, and j = ({ + 2),+++,n.
Thus the Hessenberg form is in “almost’’ lower triangular form.

Gaussian elimination utilizes row operations to reduce the coeffi-
cient matrix to lower triangular form and then back substitution
is utilized to find the solutions. The majority of the operations are
consumed in the reduction to lower triangular form.

With the transformation to Hessenberg form, (24) becomes

[al. + 8011*(0) = yM~1(Rg + R)[—V.(2) -+ Reh.(€)]
+ ¥yM(Rg + Ro)7Eg + M (Rg + Ro)™*
'[aIn + BR,QZc_leo.

(26)

(27)

Then one can employ row operations to reduce (27) to lower tri-
angular form with back substitution being utilized to solve for the
elements of 1¥(0). 1(0) can then be obtained from 1(0) = MI*(0).

Solving (24) with Gaussian elimination and back substitution
requires on the order of n3/3 per-frequency operations for large n.
Solution via the reduction to Hessenberg form [solution of (27)]
requires only [n2/2 + n/37] operations for triangularization, [n2/2 +
n/27] operations for back substitution, and n? operations to form
1(0) = MI*(0) so that the total number of per-frequency operations
has been reduced from on the order of n3/3 with Gaussian elimination
to 2n2 + n for the Hessenberg reduction; a substantial savings for
large n. Furthermore, the reduction to Hessenberg form is frequency
independent and only needs to be performed once at the beginning
of the frequency iteration.

If each line is connected to the reference conductor only through
a single resistance (a very common situation), then R, and Rg will
be diagonal and (R + Rg)!is trivial to obtain. M~ is quite simple
to obtain as a sequence of row operations {67 so that formation of
(27) is not really so difficult.

Thus we are able to reduce the number of per-frequency opera-
tions in the homogeneous medium case from on the order of n3 to
on the order of n>—a substantial savings for large .

IV CONCLUSION

Numerically efficient methods of computing the {frequency
response of multiconductor transmission lines in homogeneous and
inhomogeneous media illuminated by an EM field are presented.
The formulations allow an efficient determination of the frequency
response for cables consisting of a large number of coupled con-
ductors with various port load conditions. The transformations used
are numerically stable with respect to roundoff error and are fre-
quency independent so that they need be determined only once at
the beginning of the frequency iteration.
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On the Calibration Process of Automatic Network
Analyzer Systems

STIG REHNMARK

Abstract—Formulas are presented for the direct calculation of the
scattering parameters of a linear two-port, when it is measured by
an imperfect network analyzer. Depending on the hardware con-
figuration of the test set, the measurement system is represented by
one of two flowgraph models. In both models presented, leakage
paths are included. The error parameters, i.e., the scattering param-
eters of the measuring system, are six respective ten complex num-
bers for each frequency of interest. A calibration procedure, where
measurements are made on standards, will determine the error
parameters. One of many possible calibration procedures is briefly
described. By using explicit formulas instead of iterative methods,
the computing time for the correction of the scattering parameters of
the unknown two-port is significantly reduced. The addition of
leakage paths will only have a minor effect on computational com-
plexity while measurement accuracy will increase.

An important property of automatic network analyzers is thas
system errors can be brought to a minimum by a calibration process
[17. Two different measuring systems, represented by flowgraph
models, will be considered in this short paper. Fig. 1 shows a sche-
matic of the hardware configuration, with the digital computer ex-
cluded.

Which model to apply depends on whether the coaxial switch S,
is used or not. If the switch S, is not included, the device under test
has to be manually turned to be measured from both directions. In
this case, the flowgraph mode! presented by Hand [2] is applicable.
This model is shown in Fig. 2.

s, S19, Su, and sy are the scattering parameters of the device
under test. en—es: are parameters representing errors in the system.
By making measurements on standards, the error parameters can be
determined. Three reflexion measurements with s, = 0 are enough
to determine e, €01, and er:. This can be done with a perfeet termin-
ation, a direct and an offset short. A sliding load can simulate the
perfect termination. A transmission measurement with sy = 0
will give es. €22 and es; can then be determined if s» = 82 = 1 and
s$u = s = 0, i.e., a through connection. A thorough description of
the calibration process is given in [27. Another similar calibration
method is described in [37].

Device under test

Test Umt L P, Network
Analyzer
Sa
Sweep
Oscillator 1
- 2
N Sp
. AT | Frequericy
T Converter
— -
' »
Fig. 1. Hardware configuration.
€30
RefereEe 1 S, eazl Trans’r‘mssmn
A= > T
() e s s e,
Reflection o0 B n 22 2
R
€01 4 Si2 4
Unknown Return
Fig. 2.

Signal flowgraph of system model (switch S, not included in
test unit).
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The reflected (Mgz1) and transmitted (M) signals are measured
normalized to the reference signal. The unknown is then turned
around to measure M, B and Mr;. The scattering parameters of the
device under test are given by the following equation system:

sneo (1 — smen) -+ susSnenen

Mp = eg (1)
k D,
821632
Mz = ep + (2)
812832
Mz = e + 3)
Sg9001 (1 — 8n1€2) -+ SmSizea€01
Mg = e + (4)
D,
where
Dy =1 — suen — a6 — S1sSzuenex + SpSuenes (3)
Dy =1 — spenn — suess — s1a8menes + Snsnenes. (6)

As mentioned in [27, an iterative process can be used to find the
scattering matrix of the unknown device. This has been found to be
unnecessary since, by making substitutions in (1)-(4), the explicit
solution has been found:

sn = [C(} + Den) — ABex /N (7)
su=[1+C(en — en)J4/N (8)
sn =[1 + D(euw — ex}]B/N 9)
822 = [D(1 + Cen) — ABey /N (10)
where
N = (1 + Deu) (1 + Cen) — ABey? (11)
A = (Mr; — e3) /e (12)
B = (Mp ~ ex)/en (13)
C = (Mg — en)/en (14)
D = (Mg — ew)/en- (15)

The scattering parameters of the unknown have to be determined
at every frequency. Thus the explicit solution will save a lot of
computer time.

When the coaxial switch S, in Fig. 1 is included in the test unit,
the measured device does not have to be manually turned during
measurements. A flowgraph model for this system has been presented
by Hackborn [17. An explicit solution for the scattering parameters
of the unknown has been found by Kruppa and Sodomsky [4].

In the flowgraph model by Hackborn, however, no leakage path is
included. A flowgraph model including leakage paths is suggested in
Fig. 3. Signals without parentheses apply when the switch S, in
Fig. 1 is8 in the left position, while signals in parentheses apply when
the switch S, is in the right position.

Again, by making measurements on standards, the error param-
eters ry—ry; can be determined. The procedure will be similar to the
one mentioned previously. The calibration process described by
szkborn [17] has to be extended to include two transmission
measurements with s;; = sa = 0 for the determination of r3 and rg;.

An analysis of the flowgraph yields

S‘lﬂ‘oﬂ'xo( 1- 8227“22) + SasiTerorio

Too +

= 1

Mm D, (16)

Mo = 1y 4 2270000 891732710 a7
D,

Mps = 15 + 8227'32’7'23(1 — 8uru) -+ SuS1rnTers (18)

Dy

My = ros + kil (19)

- D

where
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Fig. 8.

Signal flowgraph of sys‘oen;t )model (switch Sg included in test
unit).

(20)

The explicit solution to the scattering parameters of the measured
device is then

Dy =1 — sury — Searss — S1sSufuree -+ SaSufnte.

sn = [G(1 4 rpH) — ruEF /Ny 21
s = E/N, (22)
sy = F/N; 23)
899 == [H(l + 7‘110)‘ —_ TuEF:]/Nl (24)
where
= (1 4+ ru@) QA + reH) — rur,EF (25)
My, —
E= T2 To3 (26)
To1723
Mp —
F o= T1 T30 (27)
T107'32
M —
¢ = Rl — Too (28)
Tol10
=M (29)
723732

As is seen above, the leakage paths will not significantly increase the
computer time needed. Accuracy, however, will be improved.
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Abstract—Optimum procedures for designing microwave acoustic
surface wave delay lines are given. Combined beam steering dif-
fraction loss curves are provided as a function of the basic material
parameter, the slope of the power flow angle, to allow optimum
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