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of simultaneous equations at each frequency. Unfortunately, it is

not always possible ‘o uncouple the equations as the following

example shows:

‘o=c :1“=c:1‘C=r:; ‘2’)
Even if under certain cases it is possible, theoretically, to dlagonalize

the coefficient matrix in (24), such a transformation can easily lead

to numerical instabilities unless it is of a numerically stable type
such as an orthogonal transformation [6].

Although it is not always possible to obtain 8 in (25) in diagonal
form, it is always possible to find a very stable transformation M

such that o is in lower (or upper) Hessenberg form [6]. The lower
Hessenberg form of 8 is such that, a large number of the entries in

o are zero, i.e., [O]ii = O, i = 1,...,n – 2, and,i = (~ -1- 2), ”””,K
Thus the Hessenberg form is in “almost” lower triangular form.

Gaussian elimination utilizes row operations to reduce the coeffi-

cient matrix to lower triangular form and then back substitution

is utilized to find the solutions. The majority of the operations are
consumed in the reduction to lower triangular form.

With the transformation to Hessenberg form, (24) becomes

[aIn + @e]I*(0) = ~M-’(R~ + R,)-’[–~.(J3) + R&~(&)]

+ -yM-’(R~ + R,)-’ES + M--l(RQ + RO)-’

. [d. + 13RSZ,-l]E,. (27 )

Then one can employ row operations to reduce (27) to lower tri-
angular form with back substitution being utilized to solve for the

elements of 1“ (0). 1(0) can then be obtained from l(0) = MI*(0).

Solving (24 ) with Gaussian elimination and back substitution

requires on the order of ns/3 per-frequency operations for large n.

Solution via the reduction to Hessenberg form [solution of (27)]

requires only [nz/2 + n/3] operations for triangu[arization, [n2/2 +
n/2 ] operations for back substitution, and nz operations to form

i(O) = MI*(O) so that the total number of per-frequency operations
hae been reduced from on the order of nt/3 with Gaussian elimination

to 2n2 + n for the Hessenberg reduction; a substantial savings for
large n. Furthermore, the reduction to Hessenberg form is frequency

independent and only needs to be performed once at the beginning
of the frequency iteration.

If each line is connected to the reference conductor only through
a single resistance (a very common situation), then RO and RQ wfll

be diagonal and (Ro + R~ )-’ is trivial to obtain. M-’ is quite simple
to obtain se a sequence of row operations [6] so that formation of

(27 ) is not really so difficult.
Thus we are able to reduce the number of per-frequency opera-

tions in the homogeneous medlmn case from on the order of nt to
on the order of ni—a substantial savings for large n.

IV CONCLUSION

Numerically efficient methods of computing the frequency

response of multiconductor transmission lines in homogeneous and

inhomogeneous media illuminated by an EM field are presented.
The formulations allow an efficient determination of the frequency

response for cables consisting of a large number of coupled con-

ductors with various port load conditions. The transformations used
are numerically stable with respect to roundoff error and are fre-

quency independent so that they need be determined only once at
the beginning of the frequency iteration.
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On the Calibration Process of Automatic Network

Analyzer Systems

STIG REHNMARK

Absfract—Formulas are presented for the direct calculation of the

scattering parameters of a linear two-port, when it is measured by

an imperfect network analyzer. Depending on the hardware con-

figuration of the test set, the measurement system is represented by

one of two flowgraph models. In both models presented, leakage

paths are included. The error parameters, i.e., the scattering param-

eters of the measuring system, are six respective ten complex mun-

bers for each frequency of interest. A calibration procedure, where

measurements are made on standards, will determine the error

parameters. One of many possible calibration procedures is briefly

described. By using explicit formulas instead of iterative methods,

the computing time for the correction of the scattering parameters of

the unknown two-port is significantly reduced. The addition of

leakage paths will only have a @nor effect on computational com-

plexity whale measurement accuracy wilf increase.

An important property of automatic network analyzers is tha;
system errors can be brought to a minimum by a calibration process
[1]. Two different measuring systems, represented by flowgraph

models, will be considered in this short paper. Fig. 1 shows a sche-

matic of the hardware configuration, with the digital computer ex-

cluded.

Which model to apply depends on whether the coaxial switch EL

is used or not. If the switch S. is not included, the device under test

has to be manually turned to be measured from both directions. In

this case, the flowgraph model presented by Hand [2] is applicable.

This model is shown in Fig. 2.
.M, s12, s21, and s22 are t,he scattering parameters of the device

under test. eOO–es~are parameters representing errors in the system.

By making measurements on standards, the error parameters can be
determined. Three reflexion measurements with S,I = o are enowh

to determine eOO,eO,, and en. This can be done with a perfect termin-
ation, a direct and an offset short. A sliding load con simulate the

perfect termination. A transmission measurement with s21 = o

will give edo. ezz and e82 can then be determined if s21 = s12 = 1 and

su = sv~ = O, i.e., a through connection. A thorough description of
the calibration process k given in [2]. Another similar calibration
method is described in [3 1
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The reflected (M~l) and transmitted (M~l) signals are measured

ncymalized to the reference signal. The unknown is then turned

around to measure ME2and M~2. The scattering parameters of the

deviwunder test aregiven bythefollowing equation system:

ME1 = coo+
.slleOl(l — stze2z) + s.nslzetieol

D,
(1)

ro3

Fig. 3. Signal flowgraph of syst;m&odel (switch & included in test
s21e32

MT, = eaO+—
D,

(2)

.!?12e82
MT2 =ejo+x (3) D, = 1 –s,,rl, –s,,r,, –s,,si,r,,rt, +s,ts,,rl,r,,. (20)

The explicit solution to the scattering parameters of the measured

device is then

.m = [G(I +rd7) — r.2tEF]/N~ (21 )

su = E/NI (22)

sz = F/Nl (23)

SM = [II(1 + rllG). — rllEF1/N1 (24 )

MrZZ = eoo +
s22e0i(l — s11e22) + s21s12e22e01

Dt
(4)

where

D, = 1 – sllen – si.,ei., —slzszlelleiz +.%slleueaz (5)

As mentioned in [2], an iterative process can be used to find the
scattering matrix of the unknown device. This has been found to be

unnecessary since, by making substitutions in (1)–(4), the explicit
solution has been found:

where

NZ = (1 +r-ilG)(l +r,&) –rm,EF (2.5)

E = MT2 –ro3

r0m23
(26)

SII = [C(I +Deli) — -4 Bed/N (7)

s12 = [1 + C (e,, – ez,) ]A/N (8)

(27)
s21 = [1 + D (eu – eaa) ]B/N (9)

sjt = [D(l + cell) – ABeti]/N (lo)

where

N = (1 + De,,) (1 + Cell) – ABeZa2 (11)

(29).4 = (MT2 – ejo) /e3t (12)

As is seen above, the leakage pathe will not significantly increase the
computer time needed. Accuracy, however, will be improved.

C = (MR1 – eOO)/eO1 (14)
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The scattering parameters of the unknown have to be determined

at every frequency. Thus the explicit solution will save a lot of

computer time.

When the coaxial switch i% in Fig. 1 is included in the test unit,

the measured device does not have to be manually turned during
measurements. A flowgraph model for this system has been presented

by Hackborn [1]. An explicit eolution for the scattering parameters
of the unknown has been found, by Kruppa and Sodomsky [4].

ln the flowgraph model by Hackborn, however, no leakage path is

included. A flowgraph model including leakage paths is suggested in
Fig. 3. Signals without parentheses apply” when the switch & in
Fi,g. 1 is in the left position, while signals in parentheses apply when

the switch i% is in the right position.
Again, by making measurements on standards, the error param-

eters r~~–r~~ can be determined. The procedure will be similar to the

one mentioned previously. The calibration process described by
Hackborn [1] has to be extended to include two transmission

rneasu~ernents with SM = .M = O for the determination of r?o and r~~.

An analysis of the flowgraph yields
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Design of Optimum Acoustic Surface Wave Delay

Lines at Microwave Frequencies
MR1 = roo +

slmOm10 ( 1 — SM3Z) + s21shr22r0w10

D,
(16)
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‘T’ = “o+ D,
(17)

Absfract—Optimum procedures for designing microwave acoustic

surface wave delay lines are given. Combined beam steering dif-

fraction loss curves are provided as a function of the basic material

parameter, the slope of the power flow angle, to allow optimumm

s22r32r2S (1 — Ltlrll ) + &1s12r11r82r28
MR2 = raa +

Dz
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